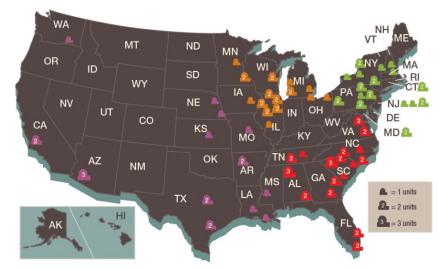
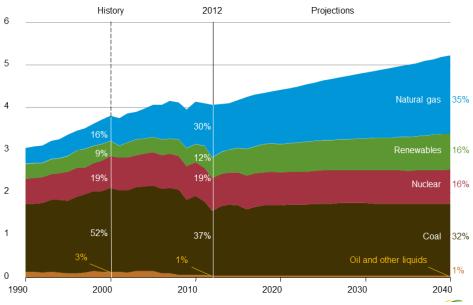


Transition to Autonomy: Parallels to the Nuclear Industry


NASA Ames Workshop March 12, 2015

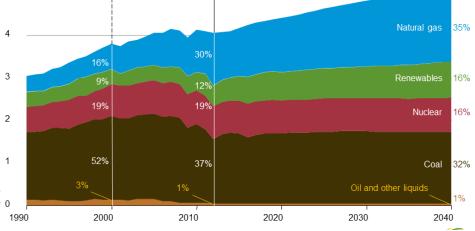

Nathan Lau, PhD
Virginia Tech
nathan.lau@vt.edu
www.ise.vt.edu/vacse

Nuclear Power Generation

- 19% of US energy mix
- 99 operating nuclear power plants
 - ◆ 1969, Oyster Creek, NJ & Nine Mile Point 1, NY
 - ◆ 1996, Watts Bar 1, TN
- 4 new builds (license issued)
 - ◆ 2 units at Virgil C Summer, SC
 - ◆ 2 units at Vogtle, GA
 - ◆ Last approval was 1978 prior to Three Mile Island, 1979

Sources: EIA and USNRC o

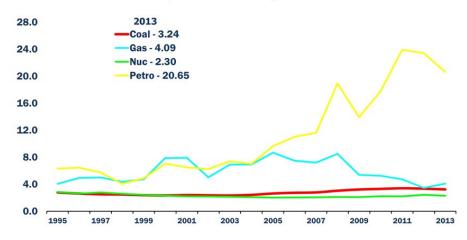
Nuclear Power Generation


- 19% of US energy mix
- 99 operating nuclear power plants

Mostly plants operate with old technology so the focus in the US has been attending to the viability of the existing fleet to support electricity production

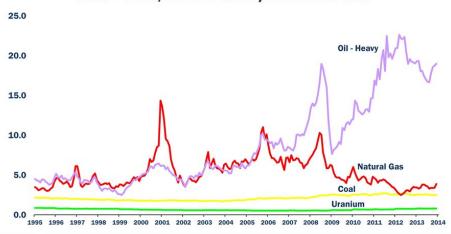
- ♦ 2 units at Vogtle, GA
- ◆ Last approval was 1978 prior to Three Mile Island, 1979

Sources: EIA and USNRC



- Life extensions & uprates
 - ◆ 40-year license expiring
 - ◆ 20-year extension application
- Modernization
 - Obsolete analog equipment
 - Digital instrumentation & control ("fly-by-wire")
- Economics
 - ◆ Low variable operations and maintenance/fuel (O&M) cost
 - ♦ High capital cost
 - ◆ High fixed O&M cost

Source: EIA


U.S. Electricity Production Costs

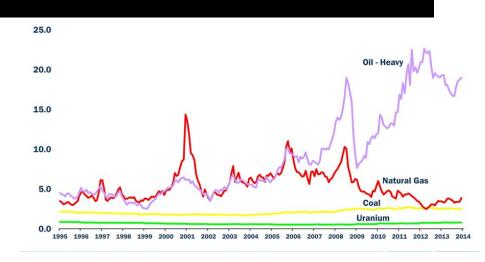
1995-2013, In 2013 cents per kilowatt-hour

Monthly Fuel Cost to U.S. Electric Utilities

1995 – 2013, *In 2013 cents per kilowatt-hour*

- Life extensions & uprates
 - ◆ 40-year license expiring
 - ◆ 20-year extension application

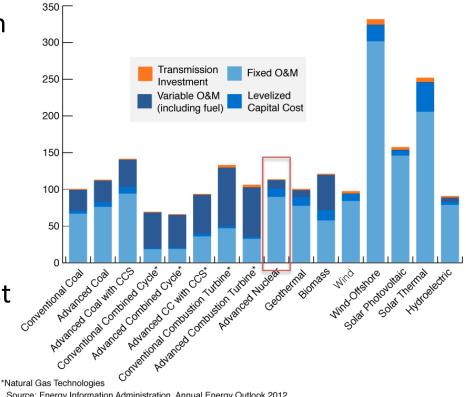
U.S. Electricity Production Costs


1995-2013, In 2013 cents per kilowatt-hour

Low variable operations and maintenance (O&M) cost provide high incentives to keep current plants operating through life-extension licensing and upgrades

16.0

- ◆ Low variable operations and maintenance/fuel (O&M) cost
- ♦ High capital cost
- High fixed O&M cost

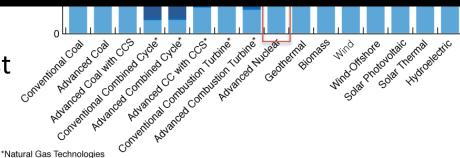


Source: EIA

- Life extensions & uprates
 - ◆ 40-year license expiring
 - ◆ 20-year extension application
- Modernization
 - Obsolete analog equipment
 - Digital instrumentation & control ("fly-by-wire")
- Economics
 - Low variable operations and maintenance/fuel (O&M) cost
 - ♦ High capital cost
 - ◆ High fixed O&M cost

Estimated Levelized Cost of New Electric Generating Technologies in 2017 (2010 \$/megawatthour)

Source: Energy Information Administration, Annual Energy Outlook 2012, http://www.eia.gov/forecasts/aeo/electricity_generation.cfm


- Life extensions & uprates
 - ♦ 40-year license expiring
 - 20-year extension application

Estimated Levelized Cost of New Electric Generating Technologies in 2017 (2010 \$/megawatthour)

High fixed operations and maintenance (labor), and capital cost drive innovation in new reactor designs and automation

- Low variable operations and maintenance/fuel (O&M) cost
- High capital cost
- High fixed O&M cost

Source: Energy Information Administration, Annual Energy Outlook 2012, http://www.eia.gov/forecasts/aeo/electricity_generation.cfm

New builds

- Small Modular Reactor (SMR)
 - Prefabricated units
 - Retrofitting fossil fuel plants
 - CFR 50.54 Part 55 staffing requirements
 - High level of automation for operating multiple reactors

Modernization

- ◆ Computer-based procedures (many levels – PDF vs "Autonomous")
- Alarm filtering/rationalization
- Wearable devices for control room and field operator coordination
- ◆ Upgrade with outages every 18 months
- DOE Light Water Reactor Sustainability Project

- New builds
 - Small Modular Reactor (SMR)
 - Prefabricated units
 - Retrofitting fossil fuel plants

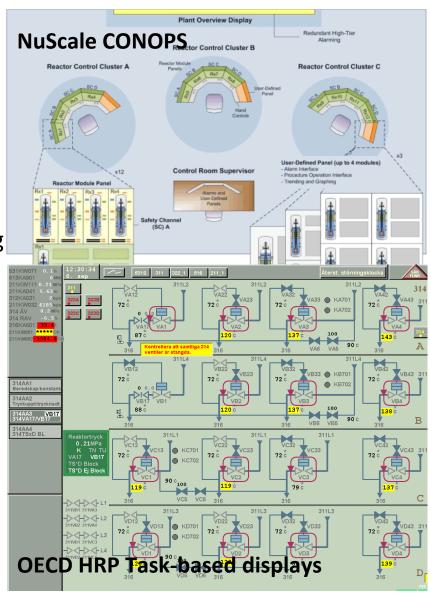
mPower Integrated System
Testloop at CAER

Small modular reactor designs can alleviate a lot risk in capital investment but regulatory exemption in control room staffing level via automation to be economical

ieveis – PDF vs. Autonomous)

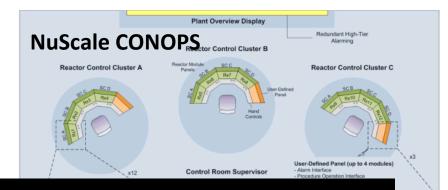
Alarm filtering/rationalization

Note: "Increasing autonomy" for process plants are different from air traffic control or unmanned systems as process plants has a relatively "closed-loop" design, though very complex.

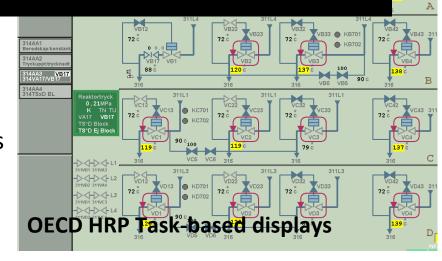


New builds

- Small Modular Reactor (SMR)
 - Prefabricated units
 - Retrofitting fossil fuel plants
 - CFR 50.54 Part 55 staffing requirements
 - High level of automation for operating multiple reactors


Modernization

- ◆ Computer-based procedures (many levels – PDF vs "Autonomous")
- Alarm filtering/rationalization
- Wearable devices for control room and field operator coordination
- ◆ Upgrade with outages every 18 months
- DOE Light Water Reactor Sustainability Project


- New builds
 - Small Modular Reactor (SMR)
 - Prefabricated units
 - Retrofitting fossil fuel plants

Reducing labor/O&M cost by increasing automation of a plant become an important aim for the series of modernization projects (that can span over 10 years)

ieveis – PDF vs. Autonomous)

- Alarm filtering/rationalization
- Wearable devices for control room and field operator coordination
- ◆ Upgrade with outages every 18 months
- DOE Light Water Reactor Sustainability Project

Automation in Nuclear and Aviation

Similarities	Differences
"Increasing autonomous" • What is ideal "autonomy"?	 Different technology and cognitive skills Process plants are relatively closed loop and thus autonomous at steady state even with primitive technology
Safety-critical = Certifying/licensing (V&V)	 Different levels of acceptable risks Single nuclear accident can destroy the industry (TMI)
Unanticipated events/beyond-designSevere accidents	
Economic motivation for change (rather than safety)	Different economic driversTransportation vs energy alternatives
Slow pace of adoption	"Open" vs "closed" systemSky vs Grid